
 

The challenges of autonomous vehicle 
decision-making in a real-world scenario 

Consider a scenario such as that shown in figure 1 below. 

 
Figure 1: This is an illustration of an autonomous vehicle (blue) intended to take a right turn at an intersection. 
The scene on the right depicts the position of the car (4 seconds away from the middle of the junction) and 
the truck as well as their intended trajectory. The table on the left shows a decision matrix containing all valid 
actions for our car to choose from considering the situation. Each of these actions are associated with values 
in terms of safety and performance reflecting the car’s assessment of risk and efficiency. Some actions have a 
time (“deadline”) attached to them which informs how long that particular action will remain valid. 

Imaging a fully autonomous car (blue) approaching a junction, intending 
to make a right turn. Let’s call it our "ego vehicle". While approaching the 
junction, it detects a truck (purple) coming from the opposite direction. 
The car is equipped with a stereo camera for environmental perception 
and GPS for localization and global path planning. Its available actions are: 
accelerate, decelerate, stop, maintain speed, and steer left or right. The 
challenge lies in deciding which action to take to ensure a safe and 
smooth turn. To make this decision, the car must predict the outcome of 
each possible action and select the one that provides the best result in 
terms of safety and performance. Let’s break this problem into smaller 
parts to better understand the decision-making process of the ego 
vehicle. 

Understanding its own position 

The ego vehicle first needs to monitor its own state, including speed, 
position, and distance to the junction. Since it cannot make the turn until 
it reaches the middle of the junction, it has some time to decide and 
adjust its velocity. For example, attempting a sharp turn at 30 mph 
without slowing down risks losing control, something the ego vehicle 
must avoid by understanding its dynamics and geometry of the roads 
and junctions. Therefore, required by the vehicle dynamics and the 



 
manoeuvre, the ego vehicle reduces its speed to 10 mph to take the turn 
as safely and smoothly as possible. 

Next, the ego vehicle must analyze its surroundings. Detecting the 
oncoming truck, it identifies the truck as a potential risk because their 
paths are likely to intersect when the ego vehicle makes the turn at the 
junction. By estimating its own time to reach the middle of the junction 
(let’s say 4 seconds) and the truck’s position and velocity, the ego vehicle 
predicts where both vehicles will be. This prediction allows it to classify the 
truck as an object of interest for tracking. 

Now, based on the understanding of the situation and prediction of how it 
will evolve in the near future, our ego vehicle generates a list of possible 
actions that are reasonable and valid at that moment. In this case, three 
options stand out: accelerate, maintain speed, and stop. 

Now, the challenge is to select the best option that maximizes our ego 
vehicle’s overall objectives. The primary goal of our ego vehicle is to avoid 
collisions and minimize near misses (i.e. situations where a collision or 
accident is narrowly avoided), thus ensuring maximum safety. At the 
same time, improving performance by reducing travel time and 
enhancing fuel efficiency remains an important objective. 

To evaluate safety and performance, the ego vehicle relies on predefined 
metrics. Time to Collision (TTC) estimates how long it will take for a 
collision to occur if both vehicles maintain their current paths. Minimum 
Distance to Collision (DTC) measures the closest distance the car gets to 
other vehicles during its manoeuvre. Collision Probability provides a 
probabilistic estimate of the crash risk, factoring in uncertainties in other 
vehicles' behavior and prediction errors. Performance, on the other hand, 
may consider factors like manoeuvre completion time, fuel efficiency and 
comfort of the passenger inside. 

Let’s take a look at how our ego vehicle may reason over the three options 
we mentioned earlier. 

Option 1: Accelerate 

This is a valid option because, if our car can accelerate early enough, it 
may clear the junction before the truck arrives. This option minimizes 
travel time and improves performance. However, it comes with a risk: if 
the truck suddenly speeds up, the car may not have enough time to stop 



 
safely. While acceleration offers decent performance, its safety value is 
slightly lower due to the possibility and effect of sudden behavioural 
change of the surrounding vehicles. 

Option 2: Maintain Speed 

Another option for the car is to maintain its current speed of 10 mph. 
Based on the truck's position and speed, the car estimates that by the 
time it reaches the turning point, the truck will have already crossed the 
junction. This means the car can make the turn without needing to stop 
completely. 

Keeping the current speed is also a safer choice compared to accelerating 
because it allows the car to either speed up or stop easily if the situation 
changes. This also gives the car more time to gather extra information 
and monitor how the situation develops. However, this option is not as 
fast as accelerating, leading to a slight increase in travel time. As a result, 
its performance value is slightly lower than the previous option. 

Option 3: Stop 

The car could choose to stop at the middle of the junction and give way to 
the truck. This option prioritizes safety by eliminating the risk of collision. 
However, it significantly impacts performance by increasing travel time 
and disrupting the flow of traffic. 

The safety and performance assessments depend on sensor data and 
predictions. Both of these have inherent uncertainties. To account for this, 
the safety and performance values in the decision matrix are expressed as 
ranges between 0 and 1. As the car gathers more data, these ranges 
narrow, reflecting the improvement of  confidence in its predictions. 

While gathering more information can improve decision-making, the car 
cannot wait indefinitely. Time constraints are critical. Each action has a 
"deadline"—the time by which it must be enacted to remain effective. For 
instance: 

●​ Accelerate: Must begin within 2 seconds to ensure the vehicle will 
clear the junction before the truck arrives. If this decision is enacted 
after that time, the manoeuvre will no longer be considered safe. 

●​ Stop: Must begin within 3 seconds to halt smoothly at the middle of 
the junction. If this decision is made after that time then excessive 



 
braking will be required for the vehicle to stop which may endanger 
the passenger inside or vehicle following behind. 

●​ Maintain Speed: Requires no immediate action since it’s already in 
progress and therefore, no deadline. 

In this scenario, let’s assume the car chooses to maintain speed, offering a 
good trade-off between safety and performance. 

Adapting to changing environments 

Since self-driving cars are designed to operate in real-world environments, 
they face unique challenges in decision-making. The real world is 
dynamic and constantly changing—what is true in one moment may no 
longer apply the next. This is precisely the case for our ego vehicle. One 
second ago, when the ego vehicle chose to maintain its speed, it was 
focused solely on the truck ahead. However, a second later, it detects a 
motorbike previously hidden behind the truck. This new information 
prompts the ego vehicle to reevaluate the situation and come up with 
another set of possible actions along with their updated assessments for 
safety and performance as shown in the decision matrix in figure 2 below. 
As the velocity of our ego vehicle is quite low and it is still 3 seconds away 
from the middle of the junction, it decides to maintain the same speed, 
allowing itself to gather more data to estimate the motorbike’s speed, 
position, and intention. 

 
Figure 2: This is an illustration of how the scene described in figure 1 has evolved after 1 second. 
This is the moment when our ego vehicle first detects the motorbike (red) previously hidden 
behind the truck with information about its intention. With this new information, the ego vehicle 
re-assesses the situation and updates the safety and performance measurements for each viable 
option in the decision matrix. 

After another second, the car observes that the motorbike has accelerated 
and is attempting to overtake the truck. At this point, accelerating or 
maintaining speed becomes unsafe. Therefore, it chooses to opt for the 
only valid option at that moment: stopping in the middle of the junction 



 
as it offers the highest safety guarantee by allowing the motorbike and 
truck to clear the area first. 

​
Figure 3: This illustrates the evolution of our first scene (figure 1) after 2 seconds. Our ego vehicle 
has collected enough camera images of the motorbike since it was first detected and observed 
that the motorbike is trying to overtake the truck. Based on this new observation and 
understanding of the situation, our car updates its decision matrix which shows that first two 
actions are no longer valid leaving “Stop” as the only viable and safe action to enact.  

While this scenario is relatively simple compared to the complex 
situations an autonomous vehicle will encounter in the real world, it 
serves as a baseline case for understanding key decision-making 
challenges. By analysing this controlled example, we can identify crucial 
factors affecting autonomous decisions and explore how they can be 
managed. Future experiments can be built upon this scenario by 
introducing additional complexities, but this baseline provides a solid 
starting point for refining decision-making strategies in dynamic 
environments. 
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